1/15/13

Argonne°

NATIONAL LABORATORY

specpy: a simplified approach for
controlling beamlines in Python

Brian Toby
Lakhsmipriya Sukumar
(an extension of PyEpics, by Matt Newville, CARS)

(@ ENERGY

Goal: create a convenient code library for scripting
beamline actions in Python

Motivation: writing Python scripts for beamline automation can be time consuming,
especially in comparison to spec, where libraries of scripts simplify many tasks.

= Library designed around needs of 1-ID, but most routines should be of general use.

— Control motors, scans, scalers in a manner similar to spec

— Reuse spec command names, variables, etc. where it makes sense

— Simplify configuration

— Allow novice Python programmers to write scripts without much knowledge of PyEpics,
Matplotlib & wxPython

— Simulation mode: make it easy to connect and disconnect the package from EPICS

¢ Allow development and testing of scripts on computers without PyEpics or without access to
beamline

e Optionally test moves for motor soft limits, even without EPICS access

= Prerequisite: knowledge of Python

specpy: Where to find it and its documentation

= Home page: https://subversion.xray.aps.anl.gov/trac/specliD

= Download with subversion from:
https://subversion.xray.aps.anl.gov/speclID/specpy/trunk/

= HTML documentation:
https://subversion.xray.aps.anl.gov/speclID/specpy/trunk/docs/build/html/index.html

= PDF documentation (48 pages, contents same as HTML):
https://subversion.xray.aps.anl.gov/spec1ID/specpy/trunk/docs/build/latex/EPICSPythonSPECmotor.pdf

Modules

= spec: SPEC-like emulation Motor interface routines
— Access motors and scalers

= macros: Additional SPEC-like emulation General Purpose Routines

— Logging of PVs, etc, plotting, user input, monitoring of PVs
= AD: Area-Detector access Detector Access Routines

— Control area detectors

® GE: GE Image processing Summary

— Processing with GE raw data files

» slid: 1-ID specific routines

— Implementation specific to 1-1D

1/15/13

Configuration Routines

The configuration routines are simple and are intended to be included in one or more
setup files (perhaps one for users and another for beamline staff)

spec.DefineMtr(’'mtrxxl’,’iocl:mtr98’,’ (mm) +up, -10 to +10’)

— Defines symbol spec.mtrXX1 to use motor with PV root iocl:mtr98. Optional
description string informs operator about the motor.

DefinePseudoMtr

— Defines a “motor” that is mapped to movement of other motors. Also note routine
spec.MoveMultipleMtr (mmv and ummv) which avoid unnecessary moves when
pseudo-motors are moved in groups.

spec.DefineScaler(’idl:scalerl’,16)
— Defines a connection to a scaler with PV root idl:scalerl

— More than one scaler can be used by defining an index (index=0 is used by default)

>>>
>>>
>>>
>>>
>>>

from spec import *

EnableEPICS
0 >>> mv(mtrl, 0.123)

DefineMtr('mtrl', 'iocl:mtr98’)
DefineMtr('mtr2', 'iocl:mtr99"')
from spec import *

Logging Configuration

Logging is used to designate values that should be recorded as data are taken. (In
module macros). These could also be collected in a configuration file.

init_logging(): Initializes the list of items to be reported

add logging...(): Used to indicate a PV, scaler, motor position, scaler or Python
global variable.

— Any number of items can be logged.

Logging is done at every step in a ascan/dscan

In scripts, usewrite logging_header () to write a file header

At eachstepusewrite logging parameters() toadd a line of values.

— Files are in .csv format (other formats could be implemented)

1/15/13

Logging example code

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

import macros Setup Logging

macros.

init logging()

GE_prefix = 'GE2:caml:'

macros.

macros
macros
macros
macros
macros

add_logging PV('GE_fname',GE prefix+"FileName",
as_string=True)

.add_logging PV('GE_fnum',GE_prefix+"FileNumber")
.add_logging motor(spec.samX)
.add_logging_scaler(9)

.add_logging Global('var S9', 'spec.S[9]")
.add_logging PV('plVs',"lidc:m64.RBV")

>>>
>>>

macros.write_logging header(logname) Scan with

spec.umv(spec.mts_y,stY)

Data Logging

>>> for iLoop in range(nLoop):

>>> spec.umvr (spec.mts_y,dY)

>>> count_em(Nframe*tframe)

>>> GE_expose(fname, Nframe, tframe)

>>> wait_ count()

>>> get_counts()

>>> macros.write logging parameters(logname)

>>> mac.beep dac()

Spec-like commands (in module spec)

move motor: mvr() & mv()
move motor with wait: umvr() & umv()

move multple motors: mmv() [w/wait ummv()]
where is this motor?: wm()

where are all motors?: wa()

start and readout scaler after completion: ct()
start scaler and return: count_em()

wait for scaler to complete: wait_count()

read scaler: get counts()

turn simulation mode on: onsim()

turn simulation mode off: offsim()

array of motor positions and last count values: A/] and S[]
Delay for n seconds: sleep()

For counting against a monitor, use SetMon() to select a scaler channel.

1/15/13

Module macros

Module macros provides more complex capabilities typically found in spec macros

= Scans —scan a peak, plot and fit it

= Logging — designates parameters to be written to file and write them on routine
call

= Plotting — designate parameters to be plotted and plot the current values on
routine call

= Monitoring — designate parameters to be written into a file, triggered by a PV
changing

= Get user input — prompted in terminal or from a GUI

= Send an e-mail (good with try/except blocks to respond to script errors)

scans

It is assumed that complex scans will be written with ,a =
Python loops for greatest flexibility (except perhaps | T
where speed is critical, when EPICS scan records are ya
needed). .
Routines macros.ascan and macros .dscan o /
provide peak finding etc. J /

" macros.ascan() andmacros.dscan|)]

— Provides plotting and Gaussian fitting. poC+s BE

— Output file intended to be spec compatible
— Any user-supplied function can also be fit using
macros.RefitLastSscan()
= Use spec.SetDet () to determine which detector
is plotted
= Usemacros.SetScanFile() to set the file
written during a ascan/dscan

>>> macros.ascan(spec.samX,1,2,21,1,settle=.1)

a

1/15/13

Fitting a scan with an alternate function

ano

Use macros.RefitLastScan (MyFit)tofita
user-defined function to the results from the last
ascan or dscan.

To create MyFit derive a class from FitClass like
this (see FitGauss and FitSawtooth in macros):

San 1 Scan 1 reft € 1v: po

class MyFit() :
def init (self,x,y):

Parameter values =145, 28.5, 15, 2.1053, 21053

Stop scan

def Eval(self,

define list of starting parameters

in terms of the obs x & y values
self.startvals = [...]

parm, Xx):

evaluate the function for each x point

return as a list or np.array
return [...]

Plotting in scripts

Designate parameters to be plotted in one call (DefineLoggingPlot) and plot

the current values in another (UpdateLoggingPlots) call

= Plotting is setup by defining the plot to be
generated using DefineLoggingPlot ()

DefineLoggingPlot('I vs time',
make_log obj_Global('time',
'spec.ELAPSED'),
make_log obj_scaler(2),
make log_obj_scaler(3))

= Points are added to the plot using
UpdateLoggingPlots()

800

Logging Plot

spec.initElapsed()

spec.umv(spec.samX, 2)

for iLoop in range(30):
spec.umvr (spec.samX,0.05)
spec.sleep(0.5)
spec.ct(1l)
UpdateLoggingPlots ()

Sanl Scanlrefit s pos

Ivs time &3

05 10

T5 20 25 30 35
time (sec) (var=spec ELAPSED)

a0

s

=

1/15/13

Monitoring changes in PVs

The PyEpics module provides a mechanism for tracking changes to PVs. This is
implemented in the specpy macros module with routines that plot or write to file
values of EPICS PVs or other parameters in response to changes in EPICS PVs.

To filter the number of events that trigger a monitor response, one can set a “dead
time” before another change should be logged and/or a specific value for the PV that
triggers a response (recommended for integer values only).

Define PV to be monitored:

DefMonitor (fileprefix, pv, monitorlist, pvvalue, delay)

fileprefix file name is fileprefix+timestamp.log

pv PV to monitor for changes

monitorlist list of PVs to list in log file

pvvalue Log only if PV == pvvalue (optional)

delay Log at most once per delay seconds (optional)

Monitoring is started when startAllMonitors () is called [multiple DefMonitor ()
calls are allowed]

Plotting when PVs change

= Two PVs can be monitored, a change in one causes the plot to be cleared or a new

plot tab to be started, the other triggers plotting. Can be used with EPICS scan record.

Define a plot using

SetupMonitorPlot(clearPV, plotPV, Xvar, Yvars, reusetab,
tablbl=None, clearPVvalue=None, cleardelay=None, plotPVvalue=None,
plotdelay=None)

clearPV PV to trigger clearing of plot
plotPV, PV to trigger plotting
Xvar, PV to plot on x-axis

Yvars List of PVs to plot on y-axis

reusetab Clear plot (False) or create new tab (default)
tablbl Label for plot tab (optional)

clearPVvalue, cleardelay Setvalue and minimum interval for clear of plot (opt)
plotPVvalue, plotdelay Set value and min interval for adding point to plot (opt)

Plotting is started when startAllMonitors () is called [multiple setupMonitorPlot () calls are

allowed]

1/15/13

Generating an e-mail on an error

Best practice: write one routine to get input values & set up a measurement and a
second to do the measurement (errors in input should not trigger an e-mail)

def DoSomething():
parms =
msg = 'Error in DoSomething’
buglist = [’llbm@aps.anl.gov’]
def GetInput():
<input code here>
def DoMeasurement():
<measurement code here>
GetInput()
try:
DoMeasurement ()
except:
macros.SendTextEmail (buglist, msg,
subject="'oops"’)

Routines to Get User Input

By following a simple protocol, input can be obtained from the user in a terminal
window or in a GUI by setting one flag

Protocol:

= Use macros.SetGUImode(UseGUI) to set mode

= Call macros.setuplnput()

= Call macros.ShowLine() to show user prompts lines
= Create an empty list for values from user

= Call macros.UserlIn() for each value from user (specify a prompt, an initial value or
None, a data type and the name of the list for values

= Call macros.finishinput() to get the input

1/15/13

MIEHES BIFE .00 Provide input
InPUt Example Press AD (ci Motors are listed with the innermost loop first.
Fastest mo' Fastest moving motor (X0) is samX
X0 (3.5): X0 35
DX (None):
This code will obtain three values fro DX (None): DX []
is True. NX (1): NX E—
X0, DX, NX

[Cancel)

macros.SetGUImode (UseGUI)
macros.setupInput()
macros.ShowLine("Motors are listed with the innermost loop first.")
if not macros.GetGUImode():

macros.ShowLine("Press "D (control D) to abort input")
macros.ShowLine("motor (X0) is "+str(spec.GetMtrInfo(spec.m3)
['symbol']))
result = []
macros.UserIn("X0",spec.wm(spec.m3),float, result)
macros.UserIn("DX",None,float, result)
macros.UserIn("NX",1,int, result)
if not macros.finishInput(): return
X0, DX, NX = result
print ‘X0, DX, NX = ‘, X0, DX, NX

Area Detector Interface

The EPICS AreaDetector module defines a common interface for area detectors — sort of. In
truth there are frequently quite different parameters that must be set for each type of
detector. The specpy AD module defines a framework that makes it easier to abstract
detector actions. Detectors are defined in two stages:
1. Define a detector with AD.DefineAreaDetector ()
— Specify a symbolic name for the detector, a symbolic detector type and one or two PV prefixes:
DefineAreaDetector('GE4', 'GE', 'GE4:caml’)
DefineAreaDetector('ScintX', 'ScintX', 'ScintX:caml', 'ScintX:TIFF1l:")
2. Define commands to be used with a set of detectors types with AD.defADcmd ()
defADcmd('trigger mode’, '$TriggerMode’, '$TriggerMode RBV’,
'Trig. mode', det='ScintX', enum=(0,1))

defADcmd('frames', '$NumImages', '$NumImages RBV', '# of frames',
enum='0 < val < 300")

Note that ‘%’ or ‘%%’ specifies the first or second PV prefix, enum specifies a tuple of
allowed values or an expression to use to check validity.

1/15/13

Commands to use with Area Detectors

= AD get() Read an area detector parameter
= AD set() Set an area detector parameter

= AD done() Testif the detector(s) have completed data collection

= AD show() Shows defined commands options for AD_get () and AD_set ()
for a detector type

= AD acquire() Setthe filename, count time and frames and collect

— Combines several AD_set () and AD_get () operations

The AD module will probably need more development for use at other sectors

1-ID specific modules

= Module GE:

— Reads files from GE, plotting images, computing average intensities for regions of
interest (ROI), plots ROI values

— Future work: incorporate data reduction steps

= Module slid:

— Functions that access specific PVs for 1-ID, such as opening hutch shutters, enabling the
fast shutter, recording motor soft limits

— These functions are worth looking at as examples, since they attempt to operate in a
fail-safe way. Operations are tried multiple times and results are tested and errors
(exceptions) are raised, so that a script will fail rather than run because a shutter fails to
open on the first try.

1/15/13

10

